视频      在线研讨会
半导体激光器 激光切割 激光器
新闻聚集
奥创光子深紫外超快激光器获新进展
材料来源:奥创光子          

高光子能量的大功率深紫外(DUV)短脉冲激光器应用广泛,如高强度伽马射线产生、材料加工、半导体检测等。DUV固体激光器采用固体激光和变频技术,可以实现高光束质量,便于通过透镜聚焦到小光斑尺寸。此外,DUV固态激光器比传统的准分子激光器更容易操控,消耗的电能更少(准分子激光目前用于工业应用,如精密和高质量激光加工)。

01

高功率DUV固态激光器发展历程

上世纪八九十年代,随着硼酸盐基非线性光学晶体的发展,波长在300 nm以下的高功率DUV固态激光器得到了发展。而后,随着高功率近红外激光器的发展,四次谐波光源的研制也得到了推进。关于四次谐波的平均输出功率,自2000年以来,多横模高功率纳秒脉冲激光器作为基波的DUV平均输出功率为12 ~ 40 W。自2009年以来,单横模高功率纳秒脉冲激光器作为基波的DUV平均输出功率为10 ~ 15 W。

最近,以单横模高功率皮秒脉冲激光器为基波的DUV平均输出功率为12 ~ 20 W。据报道,2020年,使用由皮秒脉冲振荡器和Yb:YAG innoslab放大器和BBO晶体组成的基波,在258 nm处得到的平均输出功率为20 W,重复率为1 kHz。2021年,据报道,使用由皮秒脉冲振荡器和Yb:YAG碟片放大器组成的基波,在258 nm处得到的平均输出功率为20 W。

除了高平均功率外,稳定的长期DUV输出对工业应用至关重要。2002年,据报道,在20 W的功率下连续产生DUV 100小时,然而,功率退化很明显,20 W的功率仅维持了50小时。其他研究也显示了类似的功率退化,实现高功率DUV固体激光器的长期稳定运行仍然是一个关键问题。

02

如何满足DUV激光的稳定运行

为了解决这一问题,必须解决产生DUV光的非线性光学晶体的激光诱导损伤(LID),以满足DUV激光的长周期稳定运行。在BBO的DUV光产生中,相位匹配条件(光谱、角度和温度)的三种接受带宽都很窄,常规脉冲激光器无法同时满足所有条件,因此,高效变频,长期运行中的功率退化问题是不可避免的。

2013年相关DUV报道,使用增益开关LD和线宽0.1 nm、峰值功率2.1 MW的混合放大器的基波输出。高峰值功率皮秒脉冲与大口径长BBO晶体的组合满足了DUV生成的光谱和角度接受带宽,同时避免了时间和空间走离引起的转换效率波动。从532 nm到266 nm的转换效率超过50%。BBO晶体特性很好地解决了由线性吸收和双光子吸收引起的温升,并通过满足热接受带宽保持较高的转换效率。

此外,光束发散低于BBO的角接受带宽,这种基础激光源使DUV激光器具有高功率和长期稳定运行。

03

奥创光子的研究进展

此前奥创光子曾开发了一款脉冲为10 ps,平均功率为50 W,线宽为0.5 nm,峰值功率为25 MW,重复频率为200 kHz的基波激光器。DUV的平均功率为14 W,脉冲持续时间为7 ps,使用BBO晶体,在200 kHz的重复频率下,从532 nm到266 nm转换效率为50%。此外,在平均功率为10 W的情况下持续5000小时,在266 nm处的长期DUV运转,在运行期间没有功率或光束轮廓退化。

获得的最大DUV功率受到可用基波功率的限制,工业应用需要更高功率的DUV激光器,通过将基波功率提高到平均140 W,线宽0.4 nm,峰值功率23.3 MW,使用BBO晶体,在1000 kHz重复频率下,DUV的最大平均功率可以达到28 W,从532 nm产生266 nm的转换效率约为30%左右,实现平均功率为20 W和光束质量因子(M2)小于1.3下预计可以保持10000小时。

下图显示了激光源的设置,该激光源由种子激光部分和功率放大器部分组成。种子激光器由种子源、PULSEPICKER和两级光纤前置放大器组成,功率放大器由四级固体放大器和声光调制器(AOM)组成。

种子激光部分采用被动锁模光纤激光种子源,结合锁模器件的特性和设计优化,保证匹配固体放大所需的基频信号光特性。

固体放大器用于功率放大级的放大器有1到4级。放大晶体为钕掺杂钒酸钇(Nd:YVO4)晶体。为了防止寄生振荡,增加了1°的楔形角,并将AR涂层在1064 nm处的反射率设置为小于0.1%。Nd:YVO4晶体的四面被铟箔包裹,并固定到水冷散热器上。使用波长为880 nm的锁波长LD作为泵浦源,该泵浦源是带内泵浦源,在晶体中热效应较小。泵浦源通过400 μm芯径渐变折射率光纤传输,并通过准直透镜和聚焦透镜模块入射到Nd:YVO4晶体中。

泵浦功率、放大功率和放大器各级的增益

功率放大器的平均功率特性

奥创光子分别使用光谱分析仪的光纤测量了种子激光部分的光谱,使用自由空间波长计测量了功率放大器的光谱。结果如下图所示。

为了由1064nm 产生266 nm的DUV光,使用两个非线性光学晶体来产生二次和四次谐波。对于二次谐波(SHG),采用元件尺寸为4 mm × 4mm, 临界相位匹配(LBO)晶体和两端分别为1064 nm和532 nm的AR涂层作为非线性光学晶体。LBO晶体放置在带有内置加热器的铜支架中,支架温度设置为60°C。直径为φ2 mm的1064 nm入射波束产生532 nm波束。

四次谐波采用BBO晶体作为非线性光学晶体,该晶体尺寸为4 mm × 4 mm,临界相位匹配。仅在输入端涂上AR532&266-nm涂层,并在两端涂上1.5°楔形。为避免激光回射,输出端涂AR@266 nm&532 nm涂层。晶体被放置在一个干燥室中,以防止BBO晶体的潮解。

平均功率为125 W光束直径为φ2.0 mm的1064 nm激光射入的LBO晶体,在532 nm处的平均功率为88.9 W,转换效率为71.9%。测量线宽和脉冲持续时间,分别为0.042 nm和11 ps,峰值功率为13.6 MW,光束质量因子M2= 1.2。平均功率为87.9 W直径为φ1.6 mm的532 nm激光射BBO晶体,在266 nm处的平均功率为25.4 W,转换效率为28.9%。

光束质量因子M2= 1.5。光束直径和圆度分别为φ2.2 mm和95%,由于光线的高度准直,在266 nm生成后,无需任何光束整形光学即可获得满意的光束特性。注意:光束直径是用光束轮廓仪(Ophir)在距离出光口1000 mm处测量。DUV的短时间稳定性测试曲线如下图所示:

奥创光子自2018年创立以来,已申请60余项专利,已掌握了高能高功率飞秒脉冲放大技术、啁啾体布拉格光栅色散补偿技术、波长转换等关键核心技术,结合自主设计制造的超快种子源、温度调谐式啁啾光纤光栅等核心器件已成功推出系列化飞秒激光器产品,并在国内率先实现工业领域批量出货,打破了该领域被国外产品长期垄断的局面。

目前奥创光子不断迎合当前市场对于航天航空,新能源锂电,电子消费等高端精密行业的发展节奏壮大自身,不断为先进制造产业转型升级夯实基础,促进发展。

(文章转载自网络,如有侵权,请联系删除)


上一篇:新型SLS激光器让聚合物3D打印速度... 下一篇:联赢激光获评深圳工匠培育示范单位...

版权声明:
《激光世界》网站的一切内容及解释权皆归《激光世界》杂志社版权所有,未经书面同意不得转载,违者必究!
《激光世界》杂志社。



激光世界独家专访

 
 
 
友情链接

一步步新技术

洁净室

激光世界

微波杂志

视觉系统设计

化合物半导体

工业AI

半导体芯科技

首页 | 服务条款 | 隐私声明| 关于我们 | 联络我们
Copyright© 2024: 《激光世界》; All Rights Reserved.